
Bossman

Anthony Hogg

Aug 01, 2023





CONTENTS:

1 Install 3

2 Usage 5

3 Quickstarts 11

4 Plugins 21

5 Philosophy 29

i



ii



Bossman

Bossman is a command line tool for Akamai GitOps. It helps automate the deployment and release management of
Akamai product configurations that are maintained in git.

It tries hard to be a very thin glue between git and your infrastructure, providing a simple command line interface to
manage the lifecycle of your configuration changes through simple commands:

• bossman apply - synchronize git commits to the infrastructure

• bossman prerelease --rev 757c0db5 dev* - make a specific revision live for testing

• bossman release --rev 757c0db5 - make a specific revision live to end users

• bossman status - show the state of the infrastructure

Because Bossman is simply built “on top of git”, it is possible to implement many workflows with ease.

• One single environment

• Linear promotional deployment - dev, integration, qa, preprod, prod

• Distributed development - work in parallel on multiple dev environments

• SaaS or regional model - one template and many production environments with small variations

CONTENTS: 1



Bossman

2 CONTENTS:



CHAPTER

ONE

INSTALL

1.1 Requirements

Bossman requires Python >=3.8 and git >=2.3.10.

Windows

Bossman should just about run on Windows, but support as it is will be limited. Extra dependencies may be required
(pay close attention to the output on the console when installing via pip).

It is highly recommended to use either the Windows Subsystem for Linux or Docker when running bossman
on windows.

The Windows Subsystem for Linux will provide a much smoother than native, but do pay close attention to the
warnings on the console.

In both cases (native or WSL), it is strongly recommended to install the Windows Terminal. The default terminal
font does not support all the glyphs used by bossman to convey resource status information.

1.2 Installing Locally

python3 -m pip install bossman

1.3 Using Docker

Bossman provides public docker images which can be convenient if the above requirements are hard to meet.

docker run -it --rm \
-e TERM=xterm-256color \
-v ~/.ssh/id_rsa:/home/bossman/.ssh/id_rsa:ro \
-v $PWD:/work \
-v ~/.edgerc:/home/bossman/.edgerc ynohat/bossman version

• -i is required to keep standard input open, which is required for displaying progress bars in the terminal

• -t is required to allocate a pseudo-terminal

3

https://docs.microsoft.com/en-us/windows/terminal


Bossman

• -e TERM=xterm-256color gets rich colour output, which is necessary in particular for making the best use of
bossman status

• -v ~/.ssh/id_rsa:/home/bossman/.ssh/id_rsa mounts your SSH private key into the container; see
notes below

• -v $PWD:/workmounts the current working directory to /work which is the working directory in the container

• -v ~/.edgerc:/home/bossman/.edgerc mounts the Akamai credential file in the appropriate location for
bossman to find them

• ynohat/bossman references the Docker repository, however you may wish to target a specific tag.

It is recommended to create a shell alias to avoid typing the above repeatedly!

about mounting your SSH key

Bossman needs to interact with the git remotes, over SSH. Ideally, we would forward the SSH agent socket to docker,
but I am failing to get this to work on Mac (and maybe Windows as well). There seems to be an issue with SSH
agent socket forwarding when docker is running inside a hypervisor.

As a result, mounting the private key is the only way I can propose for now, along with assurances that bossman will
not attempt to steal these credentials.

I cannot however extend the same guarantee to bossman’s dependencies.

If you choose to go forward with mounting your private key as suggested, please make sure you mount the key that
you have setup in the git remote, of course.

Important when using docker, the git user.name and user.email are not set globally. Make sure you set them
locally in the repository configuration:

git config --local user.name "Jane DOE"
git config --local user.email "Jane.DOE@acme.org"

The docker image also comes with a few other tools that go well with bossman, in particular:

• jq and git

• jsonnet and jsonnetfmt in support of the Jsonnet templating language

• The akamai command, along with the akamai jsonnet plugin which makes it easier to work with Akamai
configuration as Jsonnet

• httpie and the httpie-edgegrid authentication plugin

4 Chapter 1. Install

https://hub.docker.com/repository/docker/ynohat/bossman/tags?page=1&ordering=last_updated
https://jsonnet.org


CHAPTER

TWO

USAGE

Bossman works on top of git working copies. Within a git working copy, Bossman will manage resources using plugins
according to a simple configuration file.

This page describes how to configure and operate bossman.

2.1 Configuration

Configuration tells bossman where resources are in the repository, and which plugin to use to manage them.

It lives in a YAML file which is optional if the defaults are acceptable.

It should be called .bossman and reside at the root of the repository. It should be added to source control.

It should have a single resources field defining associations between file match patterns and resource plugins:

resources:
- module: bossman.plugins.akamai.property
pattern: akamai/property/{name}

The module field must be an importable module on the python path. Multiple resources may reference the same
module.

The pattern field is a path, relative to the root of the repository. {placeholders} like {name} in the example above
will always match a single path component (no slashes). The supported placeholders are specific to each plugin.

In addition to the module and pattern fields, each resouce group can define additional plugin-specific parameters in
an options field.

See the Plugins documentation pages for details.

.gitignore

Bossman creates a .bossmancache file at the root of the repository containing cache entries to speed up specific
lookups. This should be added to .gitignore.

5



Bossman

2.2 Targeting resources

The glob argument is accepted by all bossman commands that interact with resources. It allows the operator to restrict
the command to a subset of resources. For example, to get the status of all dev resources:

bossman status dev

It can be provided multiple times, which will restrict operation to the subset of resources whose paths match any of the
patterns.

Partial vs. exact path matching

By default, bossman performs partial matching, so the pattern need only match a part of the resource path.

In some cases, typically when the name of a resource is the prefix of another resource, it is not possible to target
only a specific resource with partial matching. For those cases, bossman supports an --exact-match flag which
requires the glob pattern to match the entire resource path.

Path matching syntax

Bossman glob patterns use Unix filename pattern matching.

Table 1: Pattern modifiers

Pattern Meaning
* Matches everything (including /)
? Matches any single character (including /)
[seq] Matches any character in _seq_
[!seq] Matches any character _not_ in _seq_

Examples

Assuming you have the following resources in your repository:

akamai/property/dev1
akamai/requestcontrol/dev1
akamai/property/dev2
akamai/requestcontrol/dev2
akamai/property/dev3
akamai/requestcontrol/dev3
akamai/property/integration
akamai/property/prod
akamai/property/prod-dark

By default (without adding the --exact-match flag)

• akamai, akam or akamai/*: will select all the resources

6 Chapter 2. Usage

https://docs.python.org/3/library/fnmatch.html


Bossman

• property or akamai/property: will select all Akamai properties

• dev[1-2] will select all Akamai resources (properties and requestcontrol) for dev1 and dev2

• dev[!3] will select all Akamai resources (properties and requestcontrol) for dev1 and dev2

Let’s now imagine a case where an operation should be applied only to akamai/property/prod. Because the
default is to search, we cannot easily target it without also targeting prod-china, but we can use the --exact-match
flag to clear the ambiguity. The following three examples would select only prod and not prod-cn:

bossman apply --exact-match */prod
# -e is the short alias of --exact-match
bossman apply -e */property/prod
bossman apply -e akamai/property/prod

To complete the illustration, the following examples use --exact-match to select both:

bossman apply -e */prod*
bossman apply -e */property/prod*
bossman apply -e akamai/property/prod*

Combining with shell expansion

Some shells, such as bash and zsh also support expansion patterns that can complement bossman’s pattern matching
for very convenient operation. For example, to select all non-production resources with the set of resources above:

bossman status property/{dev\*,integration}
# gets expanded to the following by the shell
# bossman status property/dev* property/integration

2.3 bossman version

This command outputs the version. It is the only command that can be run before bossman init.

2.4 bossman init

This command must be run before anything can be done by Bossman. It adjusts the .git/config file, adds a
[bossman] section and extra refspecs to all remotess, to ensure that git notes are properly pushed and pulled along
with commits.

2.3. bossman version 7



Bossman

2.5 bossman status [-e|--exact-match] [glob*]

Provides synthetic information about the state of resources managed by bossman.

2.6 bossman apply [--force] [--dry-run] [--since=commit]
[-e|--exact-match] [glob*]

Deploys all pending commits.

--since limits deployment to commits after the given commit ref.

This should be avoided in general, since the default behavior is what one wants. It can be useful in some cases to avoid
extraneous deployments on e.g. long lived branches, which should never be rebased.

Note that --since will deploy all commits after the given commit, non-inclusive.

For example:

Deploy the latest commit on the current branch:

bossman apply --since HEAD^

Deploy all the commits after integration was merged to the current branch:

bossman apply --since integration

--dry-run simply evaluates which revisions would be deployed, without performing any action.

--force indicates that the plugin should apply a change even if it might be unsafe. The implementation and interpre-
tation of “unsafe” is dependent on the plugin itself.

2.7 bossman validate [-e|--exact-match] [glob*]

Validates the correctness of resources in the working copy.

This is the only command that does not operate on a commit.

2.8 bossman (pre)prerelease [--rev HEAD] [-e|--exact-match]
[glob*]

• prerelease: makes a given revision available to an internal audience, typically for testing

• release: makes a given revision available to the end users

--rev can be any valid git commit reference, e.g.

• a commit hash (full or abbreviated)

• a tag name

• a branch name

• HEAD

• a relative ref

8 Chapter 2. Usage



Bossman

2.9 bossman log [-e|--exact-match] [glob*]

Outputs the revision history of the selected resources.

2.10 Usage from CI

It is possible to use bossman from automation, but the bossman (pre)release commands require confirmation
before they do anything, and expect to be run attended in a terminal, by default.

In automation, you will want to bypass confirmation, which can be done like this:

bossman prerelease --yes
bossman release --yes

2.9. bossman log [-e|--exact-match] [glob*] 9



Bossman

10 Chapter 2. Usage



CHAPTER

THREE

QUICKSTARTS

These short tutorials guide you through simple tasks with Bossman.

First ensure that you can successfully run the bossman command after following the installation instructions (Install).

3.1 Akamai : Simple Property

In this scenario, we will create a CDN property from scratch and make a simple change.

3.1.1 Requirements

• Bossman (Install)

• Access to Akamai Control Center

• (Recommended) A dedicated Access Control Group (ACG, a folder in the control center)

• (Recommended) Akamai OPEN credentials restricted to the ACG with read-write PAPI v1 privileges

• A Content Provider Code

• A domain name (this tutorial will refer to example.com)

• A Standard TLS Akamai Edge Hostname

• A $HOME/.edgerc file with a papi section (but you can configure that after reading Akamai Property)

We will be using https://httpbin.org as an origin server, but you are free to use a different one if you prefer.

3.1.2 Initializing the repository

git init bossman_quickstart_akamai_simple_property

Now that you have your git repository, Bossman needs a quick initialization as well.

cd bossman_quickstart_akamai_simple_property
bossman init

All set.

11

control.akamai.com
https://httpbin.org


Bossman

3.1.3 Preparing the directory structure

By default, bossman expects the following tree structure:

$ tree
.

akamai
property

bossman_from_scratch
hostnames.json
rules.json

3 directories, 2 files

The akamai/property prefix identifies the plugin to use. The Akamai property plugin expects subdirectories to be
property names. With this file tree, we will be managing a property called bossman_from_scratch.

Two Akamai properties cannot have the same name within an account!

Creating this structure is trivial:

mkdir -p akamai/property/bossman_from_scratch

3.1.4 Creating the hostnames.json file

This file describes the hostname mapping for the property, more information here:

PAPI V1 : PUT Property Hostnames.

You can use this as a template

1 [
2 {
3 "cnameFrom": "bossmanfromscratch.example.com",
4 "cnameTo": "your-edge-hostname.edgesuite.net",
5 "cnameType": "EDGE_HOSTNAME"
6 }
7 ]

Simply make sure you replace example.com and your-edge-hostname with your own values.

3.1.5 Creating the rules.json file

This file describes the delivery and caching rules that should be applied to traffic served by the configuration.

It obeys a schema described in the PAPI Feature Catalog Reference. This schema is versioned, and we will use a frozen
version for the sake of stability in this tutorial.

You can use the following as a template:

1 {
2 "contractId": "YOUR_CONTRACT_ID",
3 "groupId": "YOUR_GROUP_ID",
4 "productId": "YOUR_PRODUCT_ID",
5 "ruleFormat": "v2020-03-04",

(continues on next page)

12 Chapter 3. Quickstarts

https://developer.akamai.com/api/core_features/property_manager/v1.html#putpropertyversionhostnames
https://developer.akamai.com/api/core_features/property_manager/v1.html#versioning


Bossman

(continued from previous page)

6 "rules": {
7 "name": "default",
8 "comments": "The behaviors in the Default Rule apply to all requests.",
9 "options": {

10 "is_secure": false
11 },
12 "behaviors": [
13 {
14 "name": "origin",
15 "options": {
16 "cacheKeyHostname": "ORIGIN_HOSTNAME",
17 "compress": true,
18 "customValidCnValues": [
19 "{{Origin Hostname}}",
20 "{{Forward Host Header}}"
21 ],
22 "enableTrueClientIp": false,
23 "forwardHostHeader": "REQUEST_HOST_HEADER",
24 "hostname": "httpbin.org",
25 "httpPort": 80,
26 "httpsPort": 443,
27 "originCertsToHonor": "STANDARD_CERTIFICATE_AUTHORITIES",
28 "originSni": true,
29 "originType": "CUSTOMER",
30 "standardCertificateAuthorities": [
31 "akamai-permissive"
32 ],
33 "verificationMode": "PLATFORM_SETTINGS"
34 }
35 },
36 {
37 "name": "cpCode",
38 "options": {
39 "value": {
40 "id": YOUR_CPCODE_ID
41 }
42 }
43 },
44 {
45 "name": "caching",
46 "options": {
47 "behavior": "MAX_AGE",
48 "mustRevalidate": false,
49 "ttl": "31d"
50 }
51 }
52 ]
53 }
54 }

3.1. Akamai : Simple Property 13



Bossman

3.1.6 Quick validation

Bossman can help you validate your working copy using this command:

bossman validate

This will list each resource with a thumbs up emoji if validation passed.

This is only a very superficial validation that helps with:
- JSON syntax errors
- validity according to the schema

3.1.7 First commit & deployment

Bossman does not deploy from working copy, so we need to commit our changes.

git add akamai
git commit -m "init"

Before deploying this change, we can check the status:

We can create the property and deploy the change from here:

And we can look at the status again:

3.1.8 Activating to staging

Now we are ready to activate the property to staging.

After the process completes, we can check the status again:

We have an indication that v1 is active on the staging network.

And we can see the result of our efforts in Akamai Control Center!

14 Chapter 3. Quickstarts



Bossman

3.1.9 Congratulations!

Next step: Akamai : Parallel Environments

3.2 Akamai : Parallel Environments

In this scenario, we will build on the Akamai : Simple Property quickstart. and add a preproduction environment.

3.2.1 Requirements

• You have completed the Akamai : Simple Property quickstart

3.2.2 Where we are

You should have the following in your repository:

$ tree
.

akamai
property

bossman_from_scratch
hostnames.json
rules.json

3 directories, 2 files

3.2. Akamai : Parallel Environments 15



Bossman

3.2.3 Adding preproduction

cp -R akamai/property/bossman_from_scratch{,_preprod}

Important: We must now update the hostnames.json file so that it serves a different hostname.

1 [
2 {
3 "cnameFrom": "bossmanfromscratch-preprod.example.com",
4 "cnameTo": "your-edge-hostname.edgesuite.net",
5 "cnameType": "EDGE_HOSTNAME"
6 }
7 ]

Let’s make a quick detour now and run bossman status:

Our new environment is not shown! This is because bossman only concerns itself with commits, by design.

git add akamai/property/bossman_from_scratch_preprod
git commit -m "add preproduction"

Now the new environment is tracked by bossman:

3.2.4 Deployment

Just as we did previously, it is now time to deploy our change:

There was no change to deploy to the bossman_from_scratch property, and v1 of
bossman_from_scratch_preprod was created as expected.

16 Chapter 3. Quickstarts



Bossman

3.2.5 Prerelease

Now let us prerelease our new configuration to the staging network.

Note that because the commit did not touch bosssman_from_scratch, it was not deployed, so bossman does not
attempt to activate it.

We can check that all is in order in Akamai Control Center:

3.2.6 Making a change on both environments

By default, only HTTP GET requests are allowed on the Akamai platform. Allowing the use of more methods is quite
easy, though. Let’s support POST!

Simply add lines 44-51 highlighted below to both files:

• akamai/property/bossman_from_scratch/rules.jsonn

• akamai/property/bossman_from_scratch_preprod/rules.jsonn

Do NOT copy paste the entire JSON here, since it contains placeholders that you already filled in with different values
previously.

1 {
2 "contractId": "YOUR_CONTRACT_ID",
3 "groupId": "YOUR_GROUP_ID",
4 "productId": "YOUR_PRODUCT_ID",
5 "ruleFormat": "v2020-03-04",
6 "rules": {
7 "name": "default",
8 "comments": "The behaviors in the Default Rule apply to all requests.",
9 "options": {

10 "is_secure": false
11 },
12 "behaviors": [
13 {
14 "name": "origin",
15 "options": {
16 "cacheKeyHostname": "ORIGIN_HOSTNAME",

(continues on next page)

3.2. Akamai : Parallel Environments 17



Bossman

(continued from previous page)

17 "compress": true,
18 "customValidCnValues": [
19 "{{Origin Hostname}}",
20 "{{Forward Host Header}}"
21 ],
22 "enableTrueClientIp": false,
23 "forwardHostHeader": "REQUEST_HOST_HEADER",
24 "hostname": "httpbin.org",
25 "httpPort": 80,
26 "httpsPort": 443,
27 "originCertsToHonor": "STANDARD_CERTIFICATE_AUTHORITIES",
28 "originSni": true,
29 "originType": "CUSTOMER",
30 "standardCertificateAuthorities": [
31 "akamai-permissive"
32 ],
33 "verificationMode": "PLATFORM_SETTINGS"
34 }
35 },
36 {
37 "name": "cpCode",
38 "options": {
39 "value": {
40 "id": YOUR_CPCODE_ID
41 }
42 }
43 },
44 {
45 "name": "caching",
46 "options": {
47 "behavior": "MAX_AGE",
48 "mustRevalidate": false,
49 "ttl": "31d"
50 }
51 },
52 {
53 "name": "allowPost",
54 "options": {
55 "allowWithoutContentLength": false,
56 "enabled": true
57 }
58 }
59 ]
60 }
61 }

Now use bossman validate to run superficial syntax checks on your working copy. . .

18 Chapter 3. Quickstarts



Bossman

If you get thumbs up, great! If not, double-check the JSON.

We can now commit the change:

git commit -am "allow POST"

. . . and deploy the change - you’re getting used to this by now :)

Note that the commit message displayed in the screenshot is from an older version of this
tutorial where we were effecting a different change, please bear with this.

Now, we can activate on the Akamai staging network:

3.2.7 Closing Remarks

Bossman made it very easy to deploy and activate the configurations. But a few things could be improved:

• You repeated yourself when setting up the allowPost behaviour, this is (sometimes) an engineering anti-
pattern and there would be value in avoiding it!

Because bossman does not concern itself with how you build the configuration JSON and only cares about how it is
changed over time, you can use a template tool as a valuable complement. This will allow you to manage your core
configuration template in one place and automatically specialize it for the different environments you maintain.

• It would have been nice to test the caching behaviour on preprod first if this is your usual workflow. . .

In this tutorial we showed how all configurations could be kept in lockstep, but bossman supports the “preprod then
prod” workflow with equal ease.

We will cover these in later tutorials. )

3.2. Akamai : Parallel Environments 19



Bossman

20 Chapter 3. Quickstarts



CHAPTER

FOUR

PLUGINS

4.1 Akamai Property

This page provides reference information about how bossman commands relate to Akamai Property management.

4.1.1 Resource Configuration

resources:
- module: bossman.plugins.akamai.property
pattern: akamai/property/{name}
options:
edgerc: ~/.edgerc
section: default
#env_prefix: ""
#account_key: xyz

The above are the default values, applied even if the .bossman configuration file is not present. You only need to
configure if you need to depart from the defaults.

With these defaults, Bossman will look for folders under akamai/property and treat them as Akamai Property con-
figurations. The {name} placeholder is required and defines the name of the property to be managed.

The next section details the structure of the resource, the files Bossman expects to find within the property configuration
folder.

It is also possible to pass values from the environment. Supported variables include:

• EDGERC : path to the edgerc file

• EDGERC_SECTION : section within the edgerc file

• EDGERC_SWITCH_KEY : account switch key, if applicable

Values passed from the environment take precedence over the configuration file if specified.

If multiple resource groups are present and require different credentials, it is possible to specify env_prefix in the
configuration file. For example, if you have this configuration:

resources:
- module: bossman.plugins.akamai.property
pattern: akamai/property/prod/{name}
options:
edgerc: ~/.edgerc

(continues on next page)

21



Bossman

(continued from previous page)

env_prefix: PROD_
- module: bossman.plugins.akamai.property
pattern: akamai/property/preprod/{name}
options:
edgerc: ~/.edgerc
env_prefix: PREPROD_

You can specify a different section (or even a different config file or switch key) like this:

PROD_EDGERC_SECTION=prod PREPROD_EDGERC_SECTION=preprod bossman status

The switch key can also be specified as part of an .edgerc section:

[example]
client_token = xxxx
client_secret = xxxx
auth_token = xxxxx
host = xxxx
account_key = B-C-1ED34DK:1-8BYUX

The order of precedence for the switch key is environment, .bossman config file, and finally .edgerc.

4.1.2 Resource Structure

An Akamai property is composed of two files:

• hostnames.json with the host -> edgehostname mapping information

• rules.json with the CDN delivery configuration rule tree to apply

Both files are completely standard as per the documented schemas and can be used independently of Bossman through
regular API calls or other automation tools.

Bossman imposes the presence of top-level fields in rules.json which are not required by the schema:

• productId

• ruleFormat

• groupId

• contractId

productId and ruleFormat are required so that Bossman can accurately validate and version freeze property versions
when they are deployed.

groupId and contractId are required so that Bossman has enough information to create new properties in the ap-
propriate location.

22 Chapter 4. Plugins



Bossman

4.1.3 bossman status [-e|--exact-match] [glob*]

The status command displays details about interesting property versions.

Interesting property versions are either:

• activating, or pending activation on any network

• the latest version

• a deployed version of the HEAD commit of the current branch (what you’re currently working on)

• deployed versions of any HEAD commit of any branch not merged into the current branch (other work in progress)

In the normal case, property versions are created by bossman and their status line shows:

• the property version

• STG, PRD or STG,PRD depending on the activation status (if they are pending activation to staging or production,
the network trigram is followed by an hourglass)

• a icon if the version has validation errors

– that this icon should normally never be visible alongside an activation indicator (STG,PRD)

– this indicator relies on information stored in git at apply time (for performance). This means that a dirty
version will not show validation errors

• the first line of the property version notes, truncated to 40 characters

• a series of git refs to the corresponding commit, coloured green if the version corresponds to the latest commit
on that branch, or brown if it is behind; the refs shown are:

– the shortened git commit id

– a relative ref to from the current branch (e.g. main~3) if the commit is reachable (merged)

– a ref to every branch (merged or not) whose HEAD points at the commit

• a series of tags pointing at the corresponding commit, coloured blue

To illustrate:

See Making changes in the UI for more details about handling dirty versions.

4.1.4 bossman apply [--force] [--dry-run] [--since=commit]
[-e|--exact-match] [glob*]

The apply command creates a new version for every commit on the current branch.

If the property does not exist, it is created.

The productId and ruleFormat fields specified in the rules.json file are used to freeze the property version to a
specific schema version.

If the property version has validation errors, applywill succeed but a icon will be displayed, along with a list of errors
as reported by the PAPI endpoint:

4.1. Akamai Property 23

https://developer.akamai.com/api/core_features/property_manager/v1.html#freezerf


Bossman

If bossman detects that the latest version of the property is dirty, it will skip applying unless the --force flag is
also provided.

Bossman structures property version notes, by encoding:

• the commit message

• metadata about the commit, including

– the abbreviated commit hash

– the branches containing the commit

– the author

– if applicable, the committer

The purpose is threefold.

• It improves the quality of property version notes; if a good git commit message convention is in place, it is
automatically applied to the property version;

• The author(s) of the change are referenced clearly, which helps because API calls do not record this information
in a legible way in the regular Author field;

• It provides a mechanism for bossman to correlate property versions with git revisions

4.1.5 bossman (pre)release [--rev HEAD] [-e|--exact-match] [glob*]

prerelease : activates the selected revision and resources to the staging network

release : the same, to the production network

If the property version has validation errors, activation is disallowed:

24 Chapter 4. Plugins



Bossman

Acivation notes & notifications

When Bossman triggers an activation, it automatically adds the following emails to the email notification list:

• the author of the commit being released

• the committer of the commi being released, if different from the auhor

• the currently configured git user

It also formats the activation notes to look like this:

activation of 6d4fcb37 (R41) by jane.doe@acme.org using bossman 0.25.0

Where

• 6d4fcb37 is the abbreviated commit hash being released

• R41 is a list of tags pointing at the commit

• jane.doe@acme.org is the current git user email

4.1.6 Making changes in the UI

It is entirely acceptable to create new versions in the UI without breaking bossman. If an interesting version was created
without using bossman, it will be called out as dirty, and will lack any git ref information to relate it to git history :

There are two caveats however:

• bossman will not be able to activate these versions - indeed, bossman concerns itself with the deployment and
release cycle of git commits. By definition, a dirty version is not associated to a commit, and is therefore “out of
band”; the recommended approach is then to re-integrate the change into the code

• bossman cannot help with reintegration of changes from dirty versions - this needs to be done manually and
the method will depend largely on how the configurations are maintained as code.

These aspects are by design and unlikely to change. Bossman acknowledges the need to make occasional changes in
the UI, but if it is the primary workflow, then maybe bossman is not the best choice.

4.2 Akamai EdgeHostname

This page provides reference information about how bossman commands relate to Akamai Edge Hostname manage-
ment.

4.2. Akamai EdgeHostname 25



Bossman

4.2.1 Resource Configuration

resources:
- module: bossman.plugins.akamai.edgehostname
pattern: akamai/edgehostname/{name}.json
options:
edgerc: ~/.edgerc
section: default
#env_prefix: ""
#account_key: xyz

The above are the default values, applied even if the .bossman configuration file is not present. You only need to
configure if you need to depart from the defaults.

With these defaults, Bossman will look for files matching akamai/edgehostname/{name}.json and treat them as
Akamai Edge Hostname definitions. The {name} placeholder is arbitrary and doesn’t have any particular meaning,
although it is recommended to use the Edge Hostname itself since it is guaranteed to be unique.

It is also possible to pass values from the environment. Please refer to Akamai Property for more information on this
topic.

The next section details the structure of the resource, the files Bossman expects to find within the property configuration
folder.

4.2.2 Resource Structure

An Akamai EdgeHostname is composed of a single JSON file with the following structure:

{
"contractId": "ctr_C-1ED34DY",
"groupId": "grp_101216",
"edgeHostname": {
"domainPrefix": "example.com",
"domainSuffix": "edgekey.net",
"ipVersionBehavior": "IPV6_COMPLIANCE",
"productId": "SPM",
"secureNetwork": "ENHANCED_TLS",
"certEnrollmentId": 144436

}
}

The documentation for the Create a new edge hostname PAPI endpoint describes the fields.

Note that:

• certEnrollmentId should only be provided if secureNetwork is ENHANCED_TLS

• Only the fields in the JSON example above are supported by bossman

26 Chapter 4. Plugins

https://techdocs.akamai.com/property-mgr/reference/post-edgehostnames


Bossman

4.2.3 bossman status [-e|--exact-match] [glob*]

Unimplemented.

4.2.4 bossman apply [--force] [--dry-run] [--since=commit]
[-e|--exact-match] [glob*]

Will create the Edge Hostname if required. Any subsequent commit affecting the Edge Hostname JSON file might
cause bossman to output an apply result, but in reality it will have no effect.

4.2.5 bossman (pre)release [--rev HEAD] [-e|--exact-match] [glob*]

These commands have no effect since an Edge Hostname is not a versioned resource. Once applied, the changes are
effective on all networks.

4.3 Akamai Cloudlets (v3)

This page provides reference information about how bossman commands relate to Akamai Cloudlets management.

Warning: Only the cloudlets supported by the Akamai Cloudlets v3 API are currently supported by this plugin.
The complete list of supported cloudlets is on developer.akamai.com. Please feel free to open a GitHub issue if
your use case requires another Cloudlet.

4.3.1 Resource Configuration

resources:
- module: bossman.plugins.akamai.cloudlet_v3
pattern: akamai/cloudlets/{name}
options:
edgerc: ~/.edgerc
section: default
#env_prefix: ""
#account_key: xyz

The above are the default values, applied even if the .bossman configuration file is not present. You only need to
configure if you need to depart from the defaults.

With these defaults, Bossman will look for folders under akamai/cloudlet and treat them as Akamai Property con-
figurations. The {name} placeholder is required and defines the name of the property to be managed.

Warning: The name may only have letters, numbers, and underscores. This is stricter than may be allowed by
your filesystem implementation.

It is also possible to pass values from the environment. Please refer to Akamai Property for more information on this
topic.

The next section details the structure of the resource, the files Bossman expects to find within the property configuration
folder.

4.3. Akamai Cloudlets (v3) 27

https://developer.akamai.com/api/web_performance/cloudlets/v3.html#cloudletsthatusethisapi


Bossman

4.3.2 Resource Structure

An Akamai cloudlet is composed of one file, policy.json, which describes both the necessary metadata for managing
the policy, and for managing the rules that apply when the cloudlet is invoked.

The schema of this file is custom to bossman and cannot be reused in a direct API call.

{
"cloudletType": "ER",
"description": "Main redirect rules",
"groupId": 200128,
"matchRules": [

{
"matchURL": "/images/*",
"name": "Redirect images",
"redirectURL": "/static/images4/*",
"statusCode": 302,
"type": "erMatchRule",
"useIncomingQueryString": true,
"useRelativeUrl": "relative_url"

}
]

}

The following top-level fields belong to the Policy data object, you will find their documentation there:

• cloudletType

• description

• groupId

The matchRules top-level field defines the actual logic and is specified on the Policy Version data object.

4.3.3 Usage Notes

Because cloudlets have a very similar lifecycle to Akamai properties, please refer to Akamai Property for any details
about how the different Bossman commands relate to Cloudlets.

28 Chapter 4. Plugins

https://developer.akamai.com/api/web_performance/cloudlets/v3.html#policy
https://developer.akamai.com/api/web_performance/cloudlets/v3.html#version


CHAPTER

FIVE

PHILOSOPHY

When announcing Waypoint, Hashicorp defined the application lifecycle as having three main stages.

• Build : convert application source code to an artifact

• Deploy : push the built artifact to a platform

• Release : make the artifact, on the platform, available to its public

This is a simplified, but useful view.

When managing Akamai configuration artifacts, you are:

• Building JSON configuration from a template

• Deploying JSON configuration to a new version of an Akamai object (property, cloudlet policy etc. . . )

• Releasing to the staging network or the production network

Bossman is not opinionated about the build process. It concerns itself mainly with deployment and release of configu-
ration artifacts that are built through some other mechanism.

About the author

My name is Anthony Hogg, and I am an Enterprise Architect working at Akamai Technologies. I maintain Bossman
to help my customers apply DevOps methodologies to their Akamai configurations in those cases where existing
tooling is not a perfect fit.

Disclaimer

Bossman is not officially supported by Akamai Technologies. I provide support, fixes and features on a best-effort
basis with a priority on the requirements of my customers, but I also try to be as responsive as possible, and welcome
contributions.

29

https://www.hashicorp.com/blog/announcing-waypoint

	Install
	Requirements
	Installing Locally
	Using Docker

	Usage
	Configuration
	Targeting resources
	bossman version
	bossman init
	bossman status [-e|--exact-match] [glob*]
	bossman apply [--force] [--dry-run] [--since=commit] [-e|--exact-match] [glob*]
	bossman validate [-e|--exact-match] [glob*]
	bossman (pre)prerelease [--rev HEAD] [-e|--exact-match] [glob*]
	bossman log [-e|--exact-match] [glob*]
	Usage from CI

	Quickstarts
	Akamai : Simple Property
	Requirements
	Initializing the repository
	Preparing the directory structure
	Creating the hostnames.json file
	Creating the rules.json file
	Quick validation
	First commit & deployment
	Activating to staging
	Congratulations!

	Akamai : Parallel Environments
	Requirements
	Where we are
	Adding preproduction
	Deployment
	Prerelease
	Making a change on both environments
	Closing Remarks


	Plugins
	Akamai Property
	Resource Configuration
	Resource Structure
	bossman status [-e|--exact-match] [glob*]
	bossman apply [--force] [--dry-run] [--since=commit] [-e|--exact-match] [glob*]
	bossman (pre)release [--rev HEAD] [-e|--exact-match] [glob*]
	Making changes in the UI

	Akamai EdgeHostname
	Resource Configuration
	Resource Structure
	bossman status [-e|--exact-match] [glob*]
	bossman apply [--force] [--dry-run] [--since=commit] [-e|--exact-match] [glob*]
	bossman (pre)release [--rev HEAD] [-e|--exact-match] [glob*]

	Akamai Cloudlets (v3)
	Resource Configuration
	Resource Structure
	Usage Notes


	Philosophy

